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Received 19 November 1979, in final form 25 February 1980. 

Abstract. It is shown that even in the simplest case, when Yang-Mills equations with 
boundary conditions admit the Coulomb solution, there is a possibility for non-trivial, 
non-Abelian solutions. Bifurcation theory methods are used for finding these solutions. 

1. Introduction 

In this paper we will study the cylindrically symmetric solutions to the classical 
Yang-Mills field equations in the presence of an external static source. The Dirichlet 
boundary conditions will be imposed, but the Neumann boundary problem may be 
treated analogously. 

In general one cannot expect that boundary conditions will give a unique solution to 
a nonlinear equation (although it is possible for particular classes of equations), even 
locally (in a suitable Banach space). This work will illustrate this. The use of bifurcation 
theory methods gives solutions with unexpected features. Even the Abelian pure 
electric field may have bifurcating non-Abelian fields with non-zero magnetic part. 

The paper is organised as follows. In 0 2 we discuss the cylindrically symmetric 
Yang-Mills equations (Sikivie and Weiss 1978) and the bifurcation theory methods are 
briefly reviewed. In 0 3 will be presented an application of an analytical bifurcation 
method in the case when the Coulomb solution is admissible. General expressions for 
bifurcating potentials will be given. Section 4 contains one simple example which shows 
the physical nature of the obtained solutions. Section 5 includes some proposals about 
other uses of the bifurcation theory in Yang-Mills theory. 

2. Review of the theory. Computations 

Following Sikivie and Weiss (1978) we assume that the SU(2) Yang-Mills potentials 
A, (x) are time independent, and 

2 1/2 where p = ( x ?  + x 2 )  . Our interest is in Ao, Ai of (Holder) class C2’& at least 
(0 < /.L 6 1). 
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After a little computation, and putting 4’ = 4’ = A Z  = 0, one obtains (Sikivie and 
Weiss 1978) 

where A = A 1 ,  4 = 4 3  and all other A”, 4“ vanish, and b ( x )  is the source of class CO+@ 
at least. 

Suppose that we know one solution Ao, 40 to equations (2a, b )  satisfying certain 
boundary (Dirichlet, Neumann) conditions. Assume then 

4 ~ 4 o + B  A = A , + A  (3) 

and insert these into equations ( 2 ) .  

with homogeneous boundary conditions: 

-V2B + 2g2A040ff  + g2AtB + g2d2&+ 2g’AoffB + g 2 d 2 B  = 0 

Hence we obtain a sourceless system of equations with unknown functions B, d and 

(V2- l/p2+g24t)d+2g2~oAoH+2g2q50dB +g2AoB2+gZB2d  =O. (4) 

The bifurcation phenomena are closely related to the so-called zero-mode solution 
(see e.g. Jackiw (1977)) fulfilling homogeneous boundary conditions. The existence 
of such a zero-mode solution is a necessary, but not sufficient, condition for the 
bifurcation. 

In other words: if the equations (4) linearised at B = 0, f f  = 0 admit non-trivial 
solutions at certain values of a parameter (i.e. g 2 )  then they may have a non-trivial 
solution A, B Z 0 in a neighbourhood of (0,O) (Berger 1977, Krasnosel’skii 1964, 
Nirenberg 1974, Vainberg and Trenogin 1974). 

We shall explain briefly why we need more information for the sufficiency. Let us 
denote by F the operator of equations (4) which is linearised at d = B = 0 and by T 
the nonlinear (in B, A) operator of equations (4). Equations (4) can be written as 

Suppose f belongs to coker F ( g t )  = ker F*(g t ) ,  where F*(g;)  is ,!,’-adjoint to F(g; ) .  
Multiply ( 5 )  by fT (fT is the transpose of f )  and integrate over the domain. Thence 

So equation (6) gives a restriction upon the space of solutions of equations ( 5 )  (that is the 
origin of the Lyapunov-Schmidt equations-see below). We see now the importance of 
ideas such as index, ker, coker of operators. Note that, because of the ellipticity of F in 
our case, index, ker, coker are well defined (ker and coker are surely finite and, 
moreover, equal). 

Topological methods give sufficient criteria for the existence of bifurcation (Berger 
1977, Krasnosel’skii 1964, Nirenberg 1974), but our interest is not only in knowing that 
a bifurcating solution exists, but also in constructing it. Because of that we use an 
analytical method and the Lyapunov-Schmidt theorem (Vainberg and Trenogin 1974). 
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The operator F defined above is 

-V2 + g2A:, 
F ( g 2 ) = (  2g240Ao, ( 7 )  

F is Hermitian, so ker F = coker F, and the analytical index is equal to zero, ind F = 
ker F -coker F = 0 (Nirenberg 1974, Vainberg and Trenogin 1974). For simplicity 
suppose that at certain g i  dim ker F = 1, and for a sufficiently small A defined by 
g 2  = g:. + A ,  dim ker F = 0. So we can find small solutions in the form (Vainberg and 
Trenogin 1974) 

where A,, Bij are unknown functions, A = g 2  - g i ,  [ is a parameter. One can obtain 
A,, Bij after inserting equations ( 8 )  into equations (4)  and equating terms with the same 
degree of A, 5. The linear operator F must be redefined in equations ( 4 )  beforehand, 
because it should be invertible. The validity of this expansion is proved by showing that 
the Lyapunov-Schmidt equations have non-trivial small solutions (for details see 
Vainberg and Trenogin (1974)).  

The Lyapunov-Schmidt equation is 

where 

(A"::) 
and (8') is a solution of the linearised equations 

(-V2 + g2Ag)g + 2g2A040A = 0 ( 1  1 )  

with ( !L) = (0") (do is a boundary of a domain). Suppose that some of Lii are 

non-zero. The solution [(A) to equation ( 9 )  is called small if limA+o[(A)=O. 
Correspondingly, a small solution of equations ( 4 )  tends to zero as A + 0. 

The Lyapunov-Schmidt theorem asserts that the small solutions to equation ( 9 )  and 
to the full nonlinear equations (equations ( 4 )  in our case) are in one-to-one cor- 
respondence, given by the expansion (8) (Vainberg and Trenogin 1974). 

AL 

(V2 - l / p 2  + g24g)A + 2g2A040g = 0 

AL Ian 

3. Main results 

Suppose that our boundary conditions have the form 
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Then equations (2) admit a Coulomb solution (i.e. with the Abelian holonomy group) 

where G, Gs are the relevant Green functions. We see, inserting (12b) into (ll), that 
5 = 0, but the second of equations (1 1) may have non-trivial solutions of class Cz+” at 
least, everywhere except possibly along the 3-d axis. This is the Sturm-Liouville 
eigenvalue equation: there should exist a finite number of g; < 0 and an infinite number 
of eigenvalues 

g’k -+CO (k + C O ) .  

Assume that we deal with a simple eigenvalue g i  with eigenfunction f L  = 

g 2  = gz+ A and define d by 

dx’ = -F2 + (In dx fLZZ) fL (13) 

where x’ = (::) . The operator A is invertible, while F is not. 

d is a diagonal matrix, A=(A’ !), 
0, A22 

We now write equations (4) as follows: 

All Lij are finite because of the invertibility of the operator d. It may be proved 
(Vainberg and Trenogin 1974) that in this case the Lyapunov-Schmidt equations have 
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three small solutions, which can be obtained approximately, by resolving 

LllAt + L30t3 = 0.  (18) 

Thence 

[ = O  or 6 = * [ ( - L ~ I / L ~ O ) A I ~ ' ~ .  (19) 

It should be shown (Vainberg and Trenogin 1974) that the exact solution of equation (9) 
is now (besides 6 = 0) 

6 = f[(-L11/L30)A]1'2+~(Jh) where o(Jh)/Jh-* 0 (A + 0). 

Hence we have a result (using the Lyapunov-Schmidt theorem): two new solutions 
branching from the old Coulomb potential at the point g2 = gt. The bifurcating 
solutions are approximated to first order by the zero-mode solution: 

112 ') = ( t) * (- -L11 A) (i) + o(Jh). 
A L30 

Our bifurcation is overcritical; real solutions exist above g 2  because -Lll/L30> 0 (see 
(16), (17) and use the fact that fL is a fixed point of b, and A-'< 0). 

One can easily prove the non-Abelian nature of obtained solutions (see equation 
(1))  and occurrence of the magnetic field. 

4. Example 

The simplest possible case is the following: b(x) = 0, boundary aS2 is a sphere of radius 
R, boundary conditions 4 = c $ ~  = constant, A(an) = 0, and ~ ( o o )  = A ( m )  = 0. Then 

The bifurcating cylindrically symmetric solutions exist only inside the sphere of 
radius R :  

where Y = L + i, J, are the Bessel functions, g ,  > 0. All eigenvalues g t  are simple. The 
potentials A ;  are of class C" inside the sphere. 

The eigenvalues are given (for L = 1) by 

tan(gl4oR) = gl4oR. 

5. Conclusions 

The main idea of this work is to show that near the Coulomb potential may exist highly 
non-trivial solutions, non-Abelian in their nature. That surprising phenomenon is 
important also because of its relation with stability. It may be shown that above the 
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bifurcation point the Coulomb potential is unstable, while the bifurcating solutions are 
stable, at least under some assumptions about the nature of sources (e.g. for sources 
non-zero or analytic everywhere in the domain). 

The methods presented above can be used to investigate the neighbourhood of 
other exact solutions to the Yang-Mills equations in Minkowski space (e.g. the 
Prasad-Sommerfeld-Bogomolny monopole or Julia-Zee dyon-see Actor (1 979)). 
But because of the non-Abelian nature of the exact solutions it seems to be not so 
interesting as in the Coulomb case; the only new qualitative information which one 
should obtain is possibly an instability. 

The bifurcation theory may give some information about the Gribov ambiguity 
(Actor (1979) and references therein). It is well known that for sufficiently weak 
potentials the Coulomb gauge exists locally (i.e. there is a certain neighbourhood of the 
unity group element where the gauge is unique). Some results obtained by many 
authors indicate that for strong potentials the gauge may not be unique even locally. 
This can be established with the help of the bifurcation theory. But note that the Gribov 
ambiguities include also phenomena of non-local nature (e.g. Gribov showed that even 
the potentials A: = 0 have non-trivial gauge copy, far from the unity element). 
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